Improving the sampling technique of arterialized capillary samples to obtain more accurate PaO2 measurements

Chron Respir Dis. 2005;2(1):47-50. doi: 10.1191/1479972305cd052oa.


Arterialized earlobe capillary blood samples (ELCS) have been used as a measurement of blood gas status for over 20 years. There is general acceptance that there is a strong correlation and limits of agreement between arterial and arterialized blood samples with respect to pH and PaCO2. Although the correlation between the arterial and arterialized PaO2 is good, the limits of agreement poor. Our aim was to improve the accuracy of this technique in the measurement of PaO2 by simultaneously monitoring the oxygen saturation by pulse oximetry whilst taking an ELCS. We hypothesize that significant discrepancies between the SaO2 and SpO2 highlight either a poorly arterialized sample or an over aerated sample from air bubbles. We compared the SpO2 with the SaO2 of an arterial sample from 27 inpatients. We used the limits of agreement between these samples to define the degree of discordance we would accept between SaO2 and SpO2 before repeat ELCS. Subsequently, 252 consecutive patients attending our respiratory physiology unit over a six-month period had an ELCS and simultaneous SpO2. If there was a discrepancy between SaO2 and SpO2 of > 2% the ELCS was repeated. There was a good correlation and limits of agreement between the SpO2 and arterial SaO2 (r = 0.97, mean difference +/- 95% limits of agreement: 0.34 +/- 2.68). A difference of more than 2% between arterialized SaO2 and SpO2 was identified in 21 patients out of 252 (8.3%) with SaO2 higher in two and lower in 19 (r = 0.96, mean difference +/- 95% limits of agreement: 0.66 +/- 3.1). Repeat ELCS of these 21 samples reduced this discrepancy improving the concordance of the measurements (r = 0.98, mean difference +/- 95% limits of agreement: 0.47 +/- 1.0). In one case a difference of 3% remained between the saturations. We conclude that the addition of simultaneous pulse oximetry with ELCS will identify rogue measurements in about 8% of cases highlighting the need for repeat samples and thus increasing the accuracy of the measurement of PaO2 by ELCS.

Publication types

  • Comparative Study

MeSH terms

  • Arteries
  • Blood Gas Analysis / methods
  • Blood Gas Analysis / standards*
  • Capillaries
  • Humans
  • Oxygen / analysis


  • Oxygen