Describing the longitudinal course of major depression using Markov models: data integration across three national surveys

Popul Health Metr. 2005 Nov 15;3:11. doi: 10.1186/1478-7954-3-11.


Background: Most epidemiological studies of major depression report period prevalence estimates. These are of limited utility in characterizing the longitudinal epidemiology of this condition. Markov models provide a methodological framework for increasing the utility of epidemiological data. Markov models relating incidence and recovery to major depression prevalence have been described in a series of prior papers. In this paper, the models are extended to describe the longitudinal course of the disorder.

Methods: Data from three national surveys conducted by the Canadian national statistical agency (Statistics Canada) were used in this analysis. These data were integrated using a Markov model. Incidence, recurrence and recovery were represented as weekly transition probabilities. Model parameters were calibrated to the survey estimates.

Results: The population was divided into three categories: low, moderate and high recurrence groups. The size of each category was approximated using lifetime data from a study using the WHO Mental Health Composite International Diagnostic Interview (WMH-CIDI). Consistent with previous work, transition probabilities reflecting recovery were high in the initial weeks of the episodes, and declined by a fixed proportion with each passing week.

Conclusion: Markov models provide a framework for integrating psychiatric epidemiological data. Previous studies have illustrated the utility of Markov models for decomposing prevalence into its various determinants: incidence, recovery and mortality. This study extends the Markov approach by distinguishing several recurrence categories.