On the edge: modeling protrusion

Curr Opin Cell Biol. 2006 Feb;18(1):32-9. doi: 10.1016/j.ceb.2005.11.001. Epub 2005 Nov 28.

Abstract

Actin-based protrusion is the first step in cell crawling. In the last two decades, the studies of actin networks in the lamellipodium and Listeria's comet tail advanced so far that the last goal of the reductionist agenda - reconstitution of protrusion from purified components in vitro and in silico - became viable. Earlier models dealt with growth of and force generation by a single actin filament. Modern models of tethered ratchet, autocatalytic branching, end-tracking motor action and elastic- and nano- propulsion have recently helped to elucidate dynamics and forces in complex actin networks. By considering these models, their limitations and their relationships to recent biophysical data, progress is being made toward a unified model of protrusion.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Actin Cytoskeleton / metabolism*
  • Actin Cytoskeleton / physiology
  • Cell Movement
  • Cell Surface Extensions / chemistry*
  • Listeria / physiology*
  • Models, Biological*
  • Molecular Motor Proteins

Substances

  • Molecular Motor Proteins