One of the most robust experience-related cortical dynamics is reduced neural activity when stimuli are repeated. This reduction has been linked to performance improvements due to repetition and also used to probe functional characteristics of neural populations. However, the underlying neural mechanisms are as yet unknown. Here, we consider three models that have been proposed to account for repetition-related reductions in neural activity, and evaluate them in terms of their ability to account for the main properties of this phenomenon as measured with single-cell recordings and neuroimaging techniques. We also discuss future directions for distinguishing between these models, which will be important for understanding the neural consequences of repetition and for interpreting repetition-related effects in neuroimaging data.