Entorhinal cortex stimulation modulates amygdala and piriform cortex responses to olfactory bulb inputs in the rat

Neuroscience. 2006;137(4):1131-41. doi: 10.1016/j.neuroscience.2005.10.024. Epub 2005 Dec 1.

Abstract

The rodent olfactory bulb sends direct projections to the piriform cortex and to two structures intimately implicated in memory processes, the entorhinal cortex and the amygdala. The piriform cortex has monosynaptic projections with the amygdala and the piriform cortex and is therefore in a position to modulate olfactory input either directly in the piriform cortex, or via the amygdala. In order to investigate this hypothesis, field potential signals induced in anesthetized rats by electrical stimulation of the olfactory bulb or the entorhinal cortex were recorded simultaneously in the piriform cortex (anterior part and posterior part) and the amygdala (basolateral nucleus and cortical nucleus). Single-site paired-pulse stimulation was used to assess the time courses of short-term inhibition and facilitation in each recording site in response to electrical stimulation of the olfactory bulb and entorhinal cortex. Paired-pulse stimulation of the olfactory bulb induced homosynaptic inhibition for short interpulse interpulse intervals (20-30 ms) in all the recording sites, with a significantly lower degree of inhibition in the anterior piriform cortex than in the other structures. At longer intervals (40-80 ms), paired-pulse facilitation was observed in all the structures. Paired-pulse stimulation of the entorhinal cortex mainly resulted in inhibition for the shortest interval duration (20 ms) in anterior piriform cortex, posterior piriform cortex and amygdala basolateral but not cortical nucleus. Double-site paired-pulse stimulation was then applied to determine if stimulation of the entorhinal cortex can modulate responses to olfactory bulb stimulation. For short interpulse intervals (20 ms) heterosynaptic inhibition was observed in anterior piriform cortex, posterior piriform cortex and amygdala basolateral but not cortical nucleus. The level of inhibition was greater in the basolateral nucleus than in the other structures. Taken together these data suggest that the entorhinal cortex exerts a main inhibitory effect on the olfactory input via the amygdala basolateral nucleus and to a lesser extent the piriform cortex. The potential role of these effects on the processing of olfactory information is discussed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amygdala / physiology*
  • Animals
  • Brain Mapping
  • Cerebral Cortex / physiology*
  • Electric Stimulation
  • Entorhinal Cortex / physiology*
  • Female
  • Microelectrodes
  • Models, Animal
  • Olfactory Bulb / physiology*
  • Rats
  • Rats, Wistar