Analysis of cardiolipin in human muscle biopsy

J Chromatogr B Analyt Technol Biomed Life Sci. 2006 Feb 2;831(1-2):63-71. doi: 10.1016/j.jchromb.2005.11.031. Epub 2005 Dec 6.


Cardiolipin is a phospholipid that is specific to the inner mitochondrial membrane and essential for numerous mitochondrial functions. Accordingly, a quantitative assay for cardiolipin can be a valuable aspect of assessing mitochondrial content and functional capacity. The current study was undertaken to develop a simple and reliable method for direct analysis of the major molecular species of cardiolipin and with particular application for analysis of human skeletal muscle. The method that is presented is based on derivatization of cardiolipin in a total lipid extract with 1-pyrenyldiazomethane (PDAM), to form stable, fluorescent 1-pyrenylmethyl esters. The derivatization reaction takes 30 min on ice in a two-phase system (chloroform:methanol:H(2)O:H(2)SO(4)) containing 0.5-1.0mM PDAM and detergent. The contents of the major cardiolipin species in the derivatization mixture can be estimated by HPLC separation with fluorescent detection during a 20 min run on a reverse phase column and with HPLC grade ethanol/0.5mM H(3)PO(4) as the mobile phase. The recovery is about 80%. The method is specific and sensitive with quantitation limits of 0.5-1 pmol cardiolipin. The response of the fluorescence detector (peak area) is linear across a range 5-40 pmol. The assay is linear over the range between 0.3 and 3.0mg of tissue (R(2)=0.998). The assay provides good reproducibility and accuracy (within 5-10%).

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biopsy
  • Cardiolipins / analysis*
  • Cardiolipins / chemistry
  • Cardiolipins / isolation & purification
  • Chromatography, High Pressure Liquid / methods
  • Creatine Kinase / isolation & purification
  • Humans
  • Muscle, Skeletal / chemistry*
  • Pyrenes / chemistry
  • Reproducibility of Results
  • Spectrometry, Fluorescence


  • Cardiolipins
  • Pyrenes
  • 1-pyrenyldiazomethane
  • Creatine Kinase