Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Feb;31(2):93-105.
doi: 10.1093/chemse/bjj009. Epub 2005 Dec 8.

The fluid mechanics of arthropod sniffing in turbulent odor plumes

Affiliations
Review

The fluid mechanics of arthropod sniffing in turbulent odor plumes

M A R Koehl. Chem Senses. 2006 Feb.

Abstract

Many arthropods capture odorant molecules from the environment using antennae or antennules bearing arrays of chemosensory hairs. The penetration of odorant-carrying water or air into the spaces between these chemosensory hairs depends on the speed at which they are moved through the surrounding fluid. Therefore, antennule flicking by crustaceans and wing fanning by insects can have a profound impact on the odorant encounter rates of the chemosensory sensilla they bear; flicking and fanning are examples of sniffing. Odors are dispersed in the environment by turbulent wind or water currents. On the scale of an antenna or antennule, an odor plume is not a diffuse cloud but rather is a series of fine filaments of scent swirling in odor-free water. The spatiotemporal pattern of these filaments depends on distance from the odor source. The physical interaction of a hair-bearing arthropod antennule with the surrounding fluid affects the temporal patterns of odor concentration an animal intercepts when it sniffs in a turbulent odor plume.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources