Leber's hereditary optic neuropathy: a model for mitochondrial neurodegenerative diseases

FASEB J. 1992 Jul;6(10):2791-9. doi: 10.1096/fasebj.6.10.1634041.


A number of human diseases have been attributed to defects in oxidative phosphorylation (OXPHOS) resulting from mutations in the mitochondrial DNA (mtDNA). One such disease is Leber's hereditary optic neuropathy (LHON), a neurodegenerative disease of young adults that results in blindness due to atrophy of the optic nerve. The etiology of LHON is genetically heterogeneous and in some cases multifactorial. Eleven mtDNA mutations have been associated with LHON, all of which are missense mutations in the subunit genes for the subunits of the electron transport chain complexes I, III, and IV. Molecular, biochemical, and population genetic studies have categorized these mutations as high risk (class I), low risk (class II), or intermediate risk (class I/II). Class I mutations appear to be primary genetic causes of LHON, while class II mutations are frequently found associated with class I genotypes and may serve as exacerbating genetic factors. Different LHON pedigrees can harbor different combinations of class I, II, or I/II mtDNA mutations, as shown by the complete sequence analysis of the mtDNAs of four LHON probands. The various mtDNA genotypes included an isolated class I mutation, combined class I+II mutations, and combined class I/II+II mutations. The occurrence of such genotypes supports the hypothesis that LHON may result from the additive effects of various genetic and environmental insults to OXPHOS, each of which increases the probability of blindness.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Adolescent
  • Age Factors
  • DNA, Mitochondrial / genetics*
  • Humans
  • Optic Atrophies, Hereditary / genetics*
  • Pedigree
  • Sequence Homology, Nucleic Acid


  • DNA, Mitochondrial