Intermediary metabolism of organic matter in the sediments of a eutrophic lake

Appl Environ Microbiol. 1982 Mar;43(3):552-60. doi: 10.1128/aem.43.3.552-560.1982.

Abstract

The rates, products, and controls of the metabolism of fermentation intermediates in the sediments of a eutrophic lake were examined. C-fatty acids were directly injected into sediment subcores for turnover rate measurements. The highest rates of acetate turnover were in surface sediments (0- to 2-cm depth). Methane was the dominant product of acetate metabolism at all depths. Simultaneous measurements of acetate, propionate, and lactate turnover in surface sediments gave turnover rates of 159, 20, and 3 muM/h, respectively. [2-C]propionate and [U-C]lactate were metabolized to [C]acetate, CO(2), and CH(4). [C]formate was completely converted to CO(2) in less than 1 min. Inhibition of methanogenesis with chloroform resulted in an immediate accumulation of volatile fatty acids and hydrogen. Hydrogen inhibited the metabolism of C(3)-C(5) volatile fatty acids. The rates of fatty acid production were estimated from the rates of fatty acid accumulation in the presence of chloroform or hydrogen. The mean molar rates of production were acetate, 82%; propionate, 13%; butyrates, 2%; and valerates, 3%. A working model for carbon and electron flow is presented which illustrates that fermentation and methanogenesis are the predominate steps in carbon flow and that there is a close interaction between fermentative bacteria, acetogenic hydrogen-producing bacteria, and methanogens.