Possible Involvement of Toluene-2,3-Dioxygenase in Defluorination of 3-Fluoro-Substituted Benzenes by Toluene-Degrading Pseudomonas sp. Strain T-12

Appl Environ Microbiol. 1989 Feb;55(2):330-4. doi: 10.1128/aem.55.2.330-334.1989.

Abstract

Pseudomonas sp. strain T-12 cells in which the toluene-degradative pathway enzymes have been induced can transform many 3-fluoro-substituted benzenes to the corresponding 2,3-catechols with simultaneous elimination of the fluorine substituent as inorganic fluoride. Substrates for this transformation included 3-fluorotoluene, 3-fluorotrifluorotoluene, 3-fluorohalobenzenes, 3-fluoroanisole, and 3-fluorobenzonitrile. While 3-fluorotoluene and 3-fluoroanisole produced only defluorinated catechols, other substrates generated catechol products with and without the fluorine substituent. The steric size of the C-1 substituent affected the ratio of defluorinated to fluorinated catechols formed from a substrate. A mechanism for the defluorination reaction involving toluene-2,3-dioxygenase is proposed.