Modification of the Fe Protein of Nitrogenase in Natural Populations of Trichodesmium thiebautii

Appl Environ Microbiol. 1993 Mar;59(3):669-76. doi: 10.1128/aem.59.3.669-676.1993.

Abstract

The Fe protein of nitrogenase in the marine nonheterocystous cyanobacterium Trichodesmium thiebautii is interconverted between two forms, which is reminiscent of the ADP-ribosylation described in the purple bacterium Rhodospirillum rubrum. In natural populations of T. thiebautii during the day, when nitrogenase activity (NA) is present and while photosynthetic rates are high, a low-molecular-mass form of the Fe protein is present. In the late afternoon, the low-molecular-mass form is partially converted to a higher-molecular-mass form (approximately equal distribution of high- and low-molecular-mass forms of the Fe protein subunits), concurrent with cessation of NA. Some of the higher-molecular-mass form persists through the night until the very early morning, when the lower-molecular-mass form appears. New synthesis of both the Fe and MoFe proteins of nitrogenase appears to occur at this time. The higher-molecular-mass form of the Fe protein is also produced rapidly in response to artificially elevated external O(2) levels (40%) during the day. T. thiebautii is capable of recovery of NA in less than 1 h following exposure to 40% O(2), which is correlated with the return of the Fe protein to the lower-molecular-mass form. Recovery from exposure to O(2) is not dependent upon protein synthesis. The modification of the Fe protein is clearly involved in regulation of NA during the diel cycle of NA in T. thiebautii but may also be involved in protecting the Fe protein during transient O(2) concentration increases.