Corrinoid-Dependent Methyl Transfer Reactions Are Involved in Methanol and 3,4-Dimethoxybenzoate Metabolism by Sporomusa ovata

Appl Environ Microbiol. 1993 Sep;59(9):3110-6. doi: 10.1128/aem.59.9.3110-3116.1993.

Abstract

Washed and air-oxidized proteins from Sporomusa ovata cleaved the C-O bond of methanol or methoxyaromatics and transferred the methyl to dl-tetrahydrofolate. The reactions strictly required a reductive activation by titanium citrate, catalytic amounts of ATP, and the addition of dl-tetrahydrofolate. Methylcorrinoid-containing proteins carried the methanol methyl, which was transferred to dl-tetrahydrofolate at a specific rate of 120 nmol h mg of protein. Tetrahydrofolate methylation diminished after the addition of 1-iodopropane or when the methyl donor methanol was replaced by 3,4-dimethoxybenzoate. However, whole Sporomusa cells utilize the methoxyl groups of 3,4-dimethoxybenzoate as a carbon source by a sequential O demethylation to 4-hydroxy-3-methoxybenzoate and 3,4-dihydroxybenzoate. The in vitro O demethylation of 3,4-[4-methoxyl-C]dimethoxybenzoate proceeded via two distinct corrinoid-containing proteins to form 5-[C]methyltetrahydrofolate at a specific rate of 200 nmol h mg of protein. Proteins from 3,4-dimethoxybenzoate-grown cells efficiently used methoxybenzoates with vicinal substituents only, but they were unable to activate methanol. These results emphasized that specific enzymes are involved in methanol activation as well as in the activation of various methoxybenzoates and that similar corrinoid-dependent methyl transfer pathways are employed in 5-methyl-tetrahydrofolate formation from these substrates. Methyl-tetrahydrofolate could be demethylated by a distinct methyl transferase. That enzyme activity was present in washed and air-oxidized cell extracts from methanol-grown cells and from 3,4-dimethoxybenzoate-grown cells. It used cob(I)alamin as the methyl acceptor in vitro, which was methylated at a rate of 48 nmol min mg of protein even when ATP was omitted from the assay mixture. This methyl-cob(III)alamin formation made possible a spectrophotometric quantification of the preceding methyl transfers from methanol or methoxybenzoates to dl-tetrahydrofolate.