Comparison of Energy and Growth Yields for Desulfitobacterium dehalogenans during Utilization of Chlorophenol and Various Traditional Electron Acceptors

Appl Environ Microbiol. 1998 Jan;64(1):352-5. doi: 10.1128/AEM.64.1.352-355.1998.

Abstract

Desulfitobacterium dehalogenans grew with formate as the electron donor and 3-chloro-4-hydroxyphenylacetate (3-Cl-4-OHPA) as the electron acceptor, yielding Y(X/formate), Y(X/2e), and Y(X/ATP) ranging from 3.2 to 11.3 g of biomass (dry weight)/mol, thus indicating that energy was conserved through reductive dechlorination. Pyruvate was utilized as the electron donor and acceptor, yielding stoichiometric amounts of acetate and lactate, respectively, and a Y(X/reduced acceptor) of 13.0 g of biomass (dry weight)/mol. The supplementation of pyruvate-containing medium with additional electron acceptors, such as 3-Cl-4-OHPA, nitrate, fumarate, or sulfite, caused pyruvate to be replaced as the electron acceptor and nearly doubled the Y(X/ATP) (Y(X/acetate formed)). A comparison of the yields for 3-Cl-4-OHPA with those for other traditional electron acceptors indicates that the dehalogenation reaction led to the formation of similar amounts of energy equivalents. The various electron acceptors were used concomitantly with 3-Cl-4-OHPA in nonacclimated cultures, but the utilization rates and amounts utilized differed.