The role of polyunsaturated fatty acids in the expression of torpor by mammals: a review

Zoology (Jena). 2004;107(1):29-48. doi: 10.1016/j.zool.2003.12.001.


Heterothermic mammals increase the proportion of polyunsaturated fatty acids (PUFA) in their body fats prior to entering torpor. Because PUFA have low melting points, it is thought that they play an important role in maintaining the fluidity of depot fats and membrane phospholipids at low body temperatures. However, PUFA are more prone to autoxidation when exposed to reactive oxygen species (ROS) during torpor and during the periodic arousals that characterize hibernation. A lack of PUFA or an excess of PUFA may constrain the use of torpor by heterothermic mammals. We performed a mixed model meta-analysis of 17 controlled-feeding studies to test the effect of dietary PUFA on the depth and expression of torpor by daily heterotherms and hibernators. We also reviewed the literature on the PUFA content of the diet and depot fats of heterothermic mammals to address two principal topics: (1) Do low dietary levels of PUFA reduce the expression of torpor under laboratory conditions and, if so, are free-ranging animals constrained by a lack of PUFA? (2) Do high dietary levels of PUFA result in a reduction in the use, depth, and duration of torpor and, if so, do free-ranging animals seek to optimize rather than maximize PUFA intake? Low-PUFA diets consistently increase the lower setpoint for body temperature and minimum metabolic rate for both hibernators and daily heterotherms. Above the lower setpoint, low-PUFA diets usually increase body temperature and metabolic rate and decrease the duration of torpor bouts and this effect is similar for hibernators and daily heterotherms. Free-ranging rodent hibernators have dietary PUFA intakes that are far higher than those of the low-PUFA diets offered in controlled-feeding experiments, so these hibernators may never experience the constraints associated with a lack of PUFA. Diets of free-ranging insectivorous bats and echidnas have PUFA levels that are less than half as high as those offered in experimental low-PUFA diets, yet they exhibit deep and extended bouts of torpor. We argue that alternate mechanisms exist for maintaining the fluidity of body fats and that high-PUFA intake may not be a prerequisite for deep and extended bouts of torpor. Four studies indicate that animals that were fed high-PUFA diets are reluctant to enter torpor and show shallower and shorter torpor bouts. Although authors attribute this response to autoxidation, these animals did not have a higher PUFA content in their depot fats than animals where PUFA was shown to enhance torpor. We suggest that these contradictory results indicate inter-specific or inter-individual variation in the ability to control ROS and limit autoxidation of PUFA. High dietary levels of PUFA will constrain the expression of torpor only when the oxidative challenge exceeds the capacity of the antioxidant defence system. Studies of diet selection indicate that insectivorous species with low dietary PUFA levels seek to maximize PUFA intake. However, herbivorous species that have access to plants and plant parts of high-PUFA content do not appear to maximize PUFA intake. These data suggest that animals attempt to optimize rather than maximize PUFA intake. The effect of PUFA should be viewed in the light of a cost-benefit trade-off, where the benefit of high-PUFA intake is an easier access to low body temperatures and the cost is increased risk of autoxidation.