We describe the synthesis and characterisation of the fully functional molecular recognition structure of a 26-amino acid residue peptide antibody, referred to as peptibody, designed from a monoclonal single-domain antibody fragment derived from a camel heavy-chain antibody. The CDR3 region (CDR = complementarity determining region) of the cAbLys3 camel antibody fragment, which binds to the active site of hen eggwhite lysozyme (HEL) and acts as a potent enzyme inhibitor by mimicking an oligosaccharide substrate, was prepared by solid-phase peptide synthesis. To obtain a closed loop-like structure resembling that in the crystal structure, N- and C-terminal cysteine residues were added to the linear peptide and oxidised to a cyclic disulfide-bridged peptide by using dimethylsulfoxide. A further, internal cysteine-12 residue was acetamidomethyl-protected to prevent possible oxidative byproducts. Affinity separation on a lysozyme microcolumn combined with MALDI-TOF mass spectrometry revealed that the peptide resumed high affinity to lysozyme only after deprotection of Cys-12, suggesting the importance of this paratope sequence for epitope recognition. The complex of lysozyme and active peptibody was characterised directly by conducting high-resolution ESI-FTICR mass spectrometry, which provided a molecular comparison of affinities for linear and cyclic peptibodies.