A nanocompartment system based on two deletion mutants of the large channel protein FhuA (FhuA Delta1-129; FhuA Delta1-160) and an ABA triblock copolymer (PMOXA-PDMS-PMOXA) has been developed for putative biotechnological applications. FhuA is ideally suited for applications in biotechnology due to its monomeric structure, large pore diameter (39-46 A elliptical cross-section) that ensures rapid compound flux, and solved crystallographic structure. Two areas of application were targeted as proof of principle: (A) selective product recovery in nanocompartments and (B) enzymatic conversion in nanocompartments. Selective recovery of negatively charged compounds has been achieved on the example of sulforhodamine B by using positively charged polylysine molecules as trap inside the nanocompartment. Conversion in nanocompartments has been achieved by 3,3',5,5'-tetramethylbenzidine oxidation employing horseradish peroxidase (HRP).