Biological asymmetries and the fidelity of eukaryotic DNA replication

Bioessays. 1992 May;14(5):303-8. doi: 10.1002/bies.950140503.


A diploid human genome contains approximately six billion nucleotides. This enormous amount of genetic information can be replicated with great accuracy in only a few hours. However, because DNA strands are oriented antiparallel while DNA polymerization only occurs in the 5'----3' direction, semi-conservative replication of double-stranded DNA is an asymmetric process, i.e., there is a leading and a lagging strand. This provides a considerable opportunity for non-random error rates, because the architecture of the two strands as well as the DNA polymerases that replicate them may be different. In addition, the proteins that start or finish chains may well be different from those that perform the bulk of chain elongation. Furthermore, while replication fidelity depends on the absolute and relative concentrations of the four deoxyribonucleotide precursors, these are not equal in vivo, not constant throughout the cell cycle, and not necessarily equivalent in all cell types. Finally, the fidelity of DNA synthesis is sequence-dependent and the eukaryotic nuclear genome is a heterogeneous substrate. It contains repetitive and non-repetitive sequences and can actually be considered as two subgenomes that differ in nucleotide composition and gene content and that replicate at different times. The effects that each of these asymmetries may have on error rates during replication of the eukaryotic genome are discussed.

Publication types

  • Review

MeSH terms

  • DNA Replication*
  • DNA-Directed DNA Polymerase
  • Eukaryotic Cells*
  • Mutagenesis


  • DNA-Directed DNA Polymerase