Evolving and experimental technologies in medical imaging

Radiology. 2006 Jan;238(1):16-39. doi: 10.1148/radiol.2381041602.

Abstract

Medical images are created by detecting radiation probes transmitted through or emitted or scattered by the body. The radiation, modulated through interactions with tissues, yields patterns that provide anatomic and/or physiologic information. X-rays, gamma rays, radiofrequency signals, and ultrasound waves are the standard probes, but others like visible and infrared light, microwaves, terahertz rays, and intrinsic and applied electric and magnetic fields are being explored. Some of the younger technologies, such as molecular imaging, may enhance existing imaging modalities; however, they also, in combination with nanotechnology, biotechnology, bioinformatics, and new forms of computational hardware and software, may well lead to novel approaches to clinical imaging. This review provides a brief overview of the current state of image-based diagnostic medicine and offers comments on the directions in which some of its subfields may be heading.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Contrast Media
  • Diagnostic Imaging / trends*
  • Humans
  • Image Enhancement
  • Image Processing, Computer-Assisted / trends
  • Radiology Information Systems

Substances

  • Contrast Media