Thermal modulated interaction of aqueous steroids using polymer-grafted capillaries

Langmuir. 2006 Jan 3;22(1):425-30. doi: 10.1021/la051968h.

Abstract

Poly(N-isopropylacrylamide) (PIPAAm) of controlled molecular weight was densely grafted onto glass capillary lumenal surfaces using surface-initiated atom transfer radical polymerization (ATRP). Temperature-dependent changes of these thermoresponsive brush surfaces with hydrophobic steroids were investigated by exploiting thermoresponsive aqueous wettability changes of the polymer-modified surfaces in microfluidic systems. IPAAm was polymerized on ATRP initiator-immobilized glass surfaces using CuCl/CuCl(2)/tris(dimethylaminoethyl)amine (Me(6)TREN) as an ATRP catalyst in water at 25 degrees C. PIPAAm graft layer thickness and its homogeneity on glass surfaces are controlled by changing ATRP reaction time. Aqueous wettability changes of PIPAAm-grafted surfaces responses drastically changed to both grafted polymer layer thickness and temperature, especially at lower temperatures. Temperature-responsive surface properties of these PIPAAm brushes within capillary inner wall surfaces were then investigated using capillary chromatography. Effective interaction of hydrophobic steroids with dehydrated, hydrophobized PIPAAm-grafted capillary surfaces was observed above 30 degrees C without any column packing materials. Steroid elution behavior from PIPAAm-grafted capillaries contrasted sharply with that from PIPAAm hydrogel-grafted porous monolithic silica capillaries prepared by electron beam (EB) irradiation wherein significant peak broadening was observed at high-temperature regardless of sample hydrophobicity factors (log P values), indicating multistep separation modes in coated monolithic silica capillaries. In conclusion, thermoresponsive polymer-grafted capillary inner wall surfaces prepared by ATRP exhibit useful temperature-dependent surface property alterations effective to regulate interactions with biomolecules without requirements for separation bed packing materials within the capillary lumen.