Fragment velocity distribution in the impact disruption of thin glass plates

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Oct;72(4 Pt 2):045106. doi: 10.1103/PhysRevE.72.045106. Epub 2005 Oct 27.

Abstract

We present the experimental results of the measurement of fragment velocity in an impact disruption. Cylindrical projectiles impact on a side (edge) of thin glass plates, and the dispersed fragments were observed using a high-speed camera. The fragment velocity did not depend on the mass but rather on the initial position of the fragment; the velocity component parallel to the projectile direction increased with the distance from the impacted side, while the component perpendicular to the projectile direction increased with the distance from the central axis parallel to the projectile direction. It appears that there are two mechanisms for fragment ejection: one is "spallation," where the fragment velocities depend on the particle velocity induced by shock waves, and the other is "elastic ejection," where the velocities are controlled by the strain energy stored in targets and are at most a few tens of meters per second. We performed a one-dimensional numerical simulation of elastic ejection with a discrete element method and obtained the velocity distribution as a function of the initial position. The numerical results are qualitatively consistent with the experimental ones.