Glasslike arrest in spinodal decomposition as a route to colloidal gelation

Phys Rev Lett. 2005 Dec 2;95(23):238302. doi: 10.1103/PhysRevLett.95.238302. Epub 2005 Dec 1.

Abstract

Colloid-polymer mixtures can undergo spinodal decomposition into colloid-rich and colloid-poor regions. Gelation results when interconnected colloid-rich regions solidify. We show that this occurs when these regions undergo a glass transition, leading to dynamic arrest of the spinodal decomposition. The characteristic length scale of the gel decreases with increasing quench depth, and the nonergodicity parameter exhibits a pronounced dependence on scattering vector. Mode coupling theory gives a good description of the dynamics, provided we use the full static structure as input.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Colloids / chemistry*
  • Computer Simulation
  • Crystallization / methods*
  • Gels / chemistry*
  • Glass / chemistry*
  • Models, Chemical*
  • Molecular Conformation
  • Phase Transition
  • Transition Temperature

Substances

  • Colloids
  • Gels