Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Dec;4(4):479-88.
doi: 10.1142/s0219635205000951.

Cross-modal plasticity in early blindness

Affiliations

Cross-modal plasticity in early blindness

Maurice Ptito et al. J Integr Neurosci. 2005 Dec.

Abstract

The brain shows a remarkable capacity to reorganize itself following early sensory deprivation or neonatal brain damage. Using two models of deprivation, we will show that the brain does indeed adjust to the loss of either the visual cortex (which receives most of the retinal inputs through the lateral geniculate bodies of the thalamus) or the eyes (which provide the major input to the visual cortex) through cross-modal plastic processes. Hamsters, deprived of their visual system at birth, develop novel and permanent retinal projections to the auditory thalamus. These projections form functional synapses and project to the auditory cortex. When trained on a visual discrimination task, the "rewired" hamsters perform as well as normal hamsters. Lesions of the auditory cortex produce cortical blindness. Congenitally blind human subjects, trained to discriminate the orientation of a stimulus applied to the tongue via an electrotactile device, show activation of their visual cortex, whereas trained blindfolded controls show only activation of the somatosensory cortex representing the tongue. We propose that in blind subjects, there is an unmasking of existing cortico-cortical (parieto-occipital) connections, enabling transfer of somatosensory information to visual cortex.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources