Plectin, a large (> 500 kDa) dumbbell-shaped cytolinker protein plays an important role in the organization of the cytoskeletal network and the maintenance of cell integrity in a wide variety of tissues and cell types. Earlier experiments revealed the presence of plectin in the central nervous system, whereas the expression in the peripheral nervous system remained unclear. Our results obtained with reverse transcriptase-PCR (RT-PCR) provide evidence that plectin is expressed in structures of the rat peripheral nervous system. In addition to well-characterized plectin transcripts we were able to reveal novel splicing variants affecting the region coding for the central rod domain. Previous studies report a high, but tissue-specific variability of the N-terminal domain of plectin due to alternatively spliced first coding exons and the optionally spliced small exons 2 alpha and 3 alpha. We demonstrate for the first time, using single-cell RT-PCR and immunocytochemistry, that plectin is expressed in neurons of the rat superior cervical ganglion (SCG). Plectin transcripts of single SCG neurons, starting with exon 1c as the first coding exon, contain the optionally spliced exon 2 alpha but lack exon 31. These data therefore suggest that plectin is expressed in rat SCG neurons as a rodless isoform with the molecular mass of 390 kDa.