Time-of-day Effects on Myoelectric and Mechanical Properties of Muscle During Maximal and Prolonged Isokinetic Exercise

Chronobiol Int. 2005;22(6):997-1011. doi: 10.1080/07420520500397892.

Abstract

The aim of this study was to examine the time-of-day (TOD) effects in myoelectric and mechanical properties of muscle during a maximal and prolonged isokinetic exercise. Twelve male subjects were asked to perform 50 maximal voluntary contractions (MVC) of the knee extensor muscles at a constant angular velocity of 2.09 rad . sec(-1), at 06 : 00 and 18 : 00 h. Torque and electromyographic (EMG) parameters were recorded for each contraction, and the ratio between these values was calculated to evaluate variations of the neuromuscular efficiency (NME) with fatigue and with TOD. The results indicated that maximal torque values (T(45)Max) was significantly higher (7.73%) in the evening than in the morning (p<0.003). The diurnal variation in torque decrease was used to define two phases. During the first phase (1st to the 26th repetition), torque values decreased fast and values were higher in the evening than in the morning, and during the second phase (27th to the 50th repetition), torque decreased slightly and reached a floor value that appeared constant with TOD. The EMG parameters (Root Mean Square; RMS) were modified with fatigue, but were not TOD dependent. The NME decrease-significantly with fatigue, showing that peripheral factors were mainly involved in the torque decrease. Furthermore, NME decrease was greater at 18 : 00 than at 06 : 00 h for the vastus medialis (p<0.05) and the vastus lateralis muscles (p<0.002), and this occurred during the first fatigue phase of the exercise. In conclusion, the diurnal variation of the muscle fatigue observed during a maximal and prolonged isokinetic exercise seems to reflect on the muscle, with a greater contractile capacity but a higher fatigability in the evening compared to the morning.

MeSH terms

  • Adult
  • Biomechanical Phenomena
  • Body Temperature
  • Circadian Rhythm
  • Electromyography
  • Exercise / physiology*
  • Humans
  • Male
  • Muscle Contraction / physiology*
  • Muscle, Skeletal / physiology*
  • Periodicity
  • Sports
  • Torque