Isolation of monocytes from whole blood-derived buffy coats by continuous counter-flow elutriation

J Clin Apher. 2006 Oct;21(3):153-7. doi: 10.1002/jca.20077.


Monocytes (MOs) are the most commonly used precursors for the generation of dendritic cells (DCs) in vitro. Continuous counter-flow elutriation represents a promising tool to isolate MOs from white blood cell (WBC) products. Thirty whole blood-derived, AB0-identical buffy coats (BCs) were pooled using sterile technique (n = 5 experiments). For red blood cell (RBC) and polymorphonuclear cell (PMN) depletion, the BC pools were processed in a Cobe Spectra device (Gambro BCT) using the bone marrow program. Subsequently, continuous counter-flow elutriation in an Elutra device (Gambro BCT) was performed to enrich and purify MOs. BC pool volume averaged 1,260 +/- 14 ml containing 7.7 +/- 1.1 x 10(9) MOs. During 107 +/- 7 min, Cobe Spectra operation, the BC pools were processed for several times, and approximately 9,749 +/- 605 ml volume passed the device. Product volume and MO yield averaged 160 +/- 16 ml, and 4.3 +/- 1.3 x 10(9) cells, respectively. Elutra operation was performed within 59 +/- 0 min and yielded 2.5 +/- 0.9 x 10(9) MOs with a purity of 60 +/- 12%. Compared with the Cobe Spectra product cell count, MO recovery by Elutra averaged 59 +/- 10%. Elutriation of MOs from pooled BCs using Elutra exhibited comparatively low recovery and purity rates. This shortcoming may be due to the nature of the source material. Optimization of the elutriation procedure is necessary to improve MO enrichment from BCs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Blood Component Removal / instrumentation*
  • Blood Component Removal / methods*
  • Cell Separation / methods*
  • Dendritic Cells / cytology
  • Humans
  • Monocytes / cytology*
  • Neutrophils / cytology
  • Time Factors