Biomarker discovery from the plasma proteome using multidimensional fractionation proteomics

Curr Opin Chem Biol. 2006 Feb;10(1):42-9. doi: 10.1016/j.cbpa.2006.01.007. Epub 2006 Jan 18.


Because biomarkers are typically low in abundance, the crucial step of biomarker discovery is to efficiently separate clinically relevant sets of proteins that might define disease stages and/or predict disease development. It is anticipated that a multi-dimensional fractionation system (MDFS) will provide an efficient means of separating low abundance proteins from plasma proteins, resulting in the extension of the detection limit. However, when using an MDFS to analyze the plasma proteome it is important to consider how sample processing, yield, resolution and throughput potential may influence the detection limit. This review evaluates the recent advances in MDFS research with respect to '4RS criterion' (4R: resolution, reproducibility, recovery, and robustness; 4S: simplicity, speed, selectivity and sensitivity) and discusses perspectives for future plasma-derived biomarker discovery.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Biomarkers / blood*
  • Blood Proteins / analysis*
  • Chromatography, Liquid / methods
  • Humans
  • Mass Spectrometry / methods
  • Proteome / analysis*
  • Proteomics / methods*
  • Sensitivity and Specificity


  • Biomarkers
  • Blood Proteins
  • Proteome