Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jan;6(1):91-101.
doi: 10.1111/j.1567-1364.2005.00010.x.

Metabolic profiling as a tool for revealing Saccharomyces interactions during wine fermentation

Affiliations

Metabolic profiling as a tool for revealing Saccharomyces interactions during wine fermentation

Kate S Howell et al. FEMS Yeast Res. 2006 Jan.

Abstract

The multi-yeast strain composition of wine fermentations has been well established. However, the effect of multiple strains of Saccharomyces spp. on wine flavour is unknown. Here, we demonstrate that multiple strains of Saccharomyces grown together in grape juice can affect the profile of aroma compounds that accumulate during fermentation. A metabolic footprint of each yeast in monoculture, mixed cultures or blended wines was derived by gas chromatography - mass spectrometry measurement of volatiles accumulated during fermentation. The resultant ion spectrograms were transformed and compared by principal-component analysis. The principal-component analysis showed that the profiles of compounds present in wines made by mixed-culture fermentation were different from those where yeasts were grown in monoculture fermentation, and these differences could not be produced by blending wines. Blending of monoculture wines to mimic the population composition of mixed-culture wines showed that yeast metabolic interactions could account for these differences. Additionally, the yeast strain contribution of volatiles to a mixed fermentation cannot be predicted by the population of that yeast. This study provides a novel way to measure the population status of wine fermentations by metabolic footprinting.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources