The brain renin-angiotensin system is implicated in the regulation of blood pressure (BP) and fluid homeostasis. Recent studies reveal that 2 forms of renin are expressed in the brain of rodents and humans: secreted prorenin and a nonsecreted intracellular form of active renin (icREN). Although the intracellular action of renin has long been postulated, no data supporting its role in BP regulation has been reported. Therefore, we directly evaluated whether this form of renin has physiological implications for BP regulation by characterizing transgenic mice expressing human icREN driven by the glial fibrillary acidic protein (GFAP) promoter and comparing it with similar mice expressing the secreted form of renin. GFAP-icREN mice express hREN primarily in the brain and at the same level of expression as GFAP-secreted prorenin. Unlike the secreted form, which can be detected in cerebrospinal fluid, no human renin could be detected in the cerebrospinal fluid of GFAP-icREN mice. GFAP-icREN mice were then bred with transgenic mice expressing human angiotensinogen, also driven by the GFAP promoter. Double-transgenic mice expressing either the intracellular renin (2.0+/-0.12 mL/10 g/day) or secreted renin (2.8+/-0.3 mL/10 g/day) exhibited an increase in drinking volume compared with nontransgenic littermates (1.5+/-0.1 mL/10 g/day). Both models exhibited an increase in mean arterial pressure (137+/-5 and 133+/-8 mm Hg, respectively) compared with control littermates (115+/-3 mm Hg), which could be rapidly reduced after ICV injection of losartan. These data support the concept of an intracellular form of renin in the brain, which may provoke functional changes in fluid homeostasis and BP regulation.