Background: Large health care utilization databases are frequently used to analyze unintended effects of prescription drugs and biologics. Confounders that require detailed information on clinical parameters, lifestyle, or over-the-counter medications are often not measured in such datasets, causing residual confounding bias.
Objective: This paper provides a systematic approach to sensitivity analyses to investigate the impact of residual confounding in pharmacoepidemiologic studies that use health care utilization databases.
Methods: Four basic approaches to sensitivity analysis were identified: (1) sensitivity analyses based on an array of informed assumptions; (2) analyses to identify the strength of residual confounding that would be necessary to explain an observed drug-outcome association; (3) external adjustment of a drug-outcome association given additional information on single binary confounders from survey data using algebraic solutions; (4) external adjustment considering the joint distribution of multiple confounders of any distribution from external sources of information using propensity score calibration.
Conclusion: Sensitivity analyses and external adjustments can improve our understanding of the effects of drugs and biologics in epidemiologic database studies. With the availability of easy-to-apply techniques, sensitivity analyses should be used more frequently, substituting qualitative discussions of residual confounding.