Simultaneous rapid chemical synthesis of over one hundred oligonucleotides on a microscale

EMBO J. 1984 Apr;3(4):801-5. doi: 10.1002/j.1460-2075.1984.tb01888.x.

Abstract

An inexpensive, extremely rapid manual method for simultaneous synthesis of large numbers of oligodeoxyribonucleotides on 50 or 150 nanomole scale is described. The oligonucleotides are assembled in parallel by the phosphotriester method on small cellulose paper disks in a simple gas pressure-controlled continuous-flow system. For each addition of a nucleotide the disks are sorted into four sets which are placed in four columns for addition of A, C, G and T, respectively. During one 2-week period, three rounds of synthesis by this method yielded 254 oligomers (8- to 22-mers), many of which were also purified during this time. Using 50 nanomole scale reactions the yields for 17-mers, for example, were in the range of 0.5 O.D.(260) units ( 5 nmol, i.e., 10% yield), an amount sufficient for most purposes. The equipment required is relatively inexpensive and for the most part usually already available in molecular biology laboratories. All chemicals are commercially available and the current reagent cost per oligonucleotide (25 mug, average length 17-mer) is 3 US dollars.