Detection of type A, B, E, and F Clostridium botulinum neurotoxins in foods by using an amplified enzyme-linked immunosorbent assay with digoxigenin-labeled antibodies
- PMID: 16461671
- PMCID: PMC1392902
- DOI: 10.1128/AEM.72.2.1231-1238.2006
Detection of type A, B, E, and F Clostridium botulinum neurotoxins in foods by using an amplified enzyme-linked immunosorbent assay with digoxigenin-labeled antibodies
Abstract
An amplified enzyme-linked immunosorbent assay (ELISA) for the detection of Clostridium botulinum complex neurotoxins was evaluated for its ability to detect these toxins in food. The assay was found to be suitable for detecting type A, B, E, and F botulinum neurotoxins in a variety of food matrices representing liquids, solid, and semisolid food. Specific foods included broccoli, orange juice, bottled water, cola soft drinks, vanilla extract, oregano, potato salad, apple juice, meat products, and dairy foods. The detection sensitivity of the test for these botulinum complex serotypes was found to be 60 pg/ml (1.9 50% lethal dose [LD50]) for botulinum neurotoxin type A (BoNT/A), 176 pg/ml (1.58 LD50) for BoNT/B, 163 pg/ml for BoNT/E (4.5 LD50), and 117 pg/ml for BoNT/F (less than 1 LD50) in casein buffer. The test could also readily detect 2 ng/ml of neurotoxins type A, B, E, and F in a variety of food samples. For specificity studies, the assay was also used to test a large panel of type A C. botulinum, a smaller panel of proteolytic and nonproteolytic type B, E, and F neurotoxin-producing Clostridia, and nontoxigenic organisms using an overnight incubation of toxin production medium. The assay appears to be an effective tool for large-scale screening of the food supply in the event of a botulinum neurotoxin contamination event.
Figures
Similar articles
-
Real-time PCR detection of the nontoxic nonhemagglutinin gene as a rapid screening method for bacterial isolates harboring the botulinum neurotoxin (A-G) gene complex.J Microbiol Methods. 2007 Dec;71(3):343-6. doi: 10.1016/j.mimet.2007.09.016. Epub 2007 Sep 29. J Microbiol Methods. 2007. PMID: 17961766
-
Rapid detection of Clostridium botulinum toxins A, B, E, and F in clinical samples, selected food matrices, and buffer using paramagnetic bead-based electrochemiluminescence detection.Anal Biochem. 2006 Jun 15;353(2):248-56. doi: 10.1016/j.ab.2006.02.030. Epub 2006 Mar 20. Anal Biochem. 2006. PMID: 16620745
-
Rapid affinity immunochromatography column-based tests for sensitive detection of Clostridium botulinum neurotoxins and Escherichia coli O157.Appl Environ Microbiol. 2010 Jul;76(13):4143-50. doi: 10.1128/AEM.03059-09. Epub 2010 Apr 30. Appl Environ Microbiol. 2010. PMID: 20435757 Free PMC article.
-
Methods for detection of Clostridium botulinum toxin in foods.J Food Prot. 2005 Jun;68(6):1256-63. doi: 10.4315/0362-028x-68.6.1256. J Food Prot. 2005. PMID: 15954719 Review.
-
Clostridium botulinum and the safety of minimally heated, chilled foods: an emerging issue?J Appl Microbiol. 2006 Sep;101(3):556-70. doi: 10.1111/j.1365-2672.2006.02987.x. J Appl Microbiol. 2006. PMID: 16907806 Review.
Cited by
-
A colorimetric aptasensor based on gold nanoparticles for detection of microbial toxins: an alternative approach to conventional methods.Anal Bioanal Chem. 2022 Oct;414(24):7103-7122. doi: 10.1007/s00216-022-04227-9. Epub 2022 Jul 29. Anal Bioanal Chem. 2022. PMID: 35902394 Review.
-
Recent Developments in Botulinum Neurotoxins Detection.Microorganisms. 2022 May 10;10(5):1001. doi: 10.3390/microorganisms10051001. Microorganisms. 2022. PMID: 35630444 Free PMC article. Review.
-
Current Developments in Diagnostic Assays for Laboratory Confirmation and Investigation of Botulism.J Clin Microbiol. 2022 Apr 20;60(4):e0013920. doi: 10.1128/JCM.00139-20. Epub 2021 Sep 29. J Clin Microbiol. 2022. PMID: 34586891 Free PMC article. Review.
-
Differentiation, Quantification and Identification of Abrin and Abrus precatorius Agglutinin.Toxins (Basel). 2021 Apr 18;13(4):284. doi: 10.3390/toxins13040284. Toxins (Basel). 2021. PMID: 33919561 Free PMC article.
-
Rapid Detection of Clostridium botulinum in Food Using Loop-Mediated Isothermal Amplification (LAMP).Int J Environ Res Public Health. 2021 Apr 21;18(9):4401. doi: 10.3390/ijerph18094401. Int J Environ Res Public Health. 2021. PMID: 33919101 Free PMC article.
References
-
- Andreadis, J. D., J. J. Kools, J. K. Dykes, and J. L. Ferreira, and S. E. Maslanka. 2003. Development of an in vitro DIG-ELISA assay for detection of Clostridium botulinum neurotoxin serotype A, B, E and F, abstr. 56. In Future directions for biodefense research: development of countermeasures. Proceedings of the ASM Biodefense Research Meeting. American Society for Microbiology, Washington, D.C.
-
- Arnon, S. S., R. Schechter, T. V. Inglesby, D. A. Henderson, J. G. Bartlett, M. S. Ascher, E. Eitzen, A. D. Fine, J. Hauer, M. Layton, S. Lillibridge, M. T. Osterholm, T. O'Toole, G. Parker, T. M. Perl, P. K. Russell, D. L. Swerdlow, and K. Tonat. 2001. Botulinum toxin as a biological weapon: medical and public health management. JAMA 285:1059-1070. - PubMed
-
- Binz, T., H. Kurazono, M. Wille, J. Frevert, K. Wernars, and H. Niemann. 1990. The complete sequence of botulinum neurotoxin type A and comparison with other clostridial neurotoxins. J. Biol. Chem. 265:9153-9158. - PubMed
-
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. - PubMed
-
- Burkard, F., F. Chen, G. M. Kuziemko, and R. C. Stevens. 1997. Electron density projection map of the botulinum neurotoxin 900-kilodalton complex by electron crystallography. J. Struct. Biol. 120:78-84. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
