Depletion "skraps" and dynamic buffering inside the cellular calcium store

Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2982-7. doi: 10.1073/pnas.0511252103. Epub 2006 Feb 10.

Abstract

Ca2+ signals, produced by Ca2+ release from cellular stores, switch metabolic responses inside cells. In muscle, Ca2+ sparks locally exhibit the rapid start and termination of the cell-wide signal. By imaging Ca2+ inside the store using shifted excitation and emission ratioing of fluorescence, a surprising observation was made: Depletion during sparks or voltage-induced cell-wide release occurs too late, continuing to progress even after the Ca2+ release channels have closed. This finding indicates that Ca2+ is released from a "proximate" compartment functionally in between store lumen and cytosol. The presence of a proximate compartment also explains a paradoxical surge in intrastore Ca2+, which was recorded upon stimulation of prolonged, cell-wide Ca2+ release. An intrastore surge upon induction of Ca2+ release was first reported in subcellular store fractions, where its source was traced to the store buffer, calsequestrin. The present results update the evolving concept, largely due to N. Ikemoto and C. Kang, of calsequestrin as a dynamic store. Given the strategic location and reduction of dimensionality of Ca2+-adsorbing linear polymers of calsequestrin, they could deliver Ca2+ to the open release channels more efficiently than the luminal store solution, thus constituting the proximate compartment. When store depletion becomes widespread, the polymers would collapse to increase store [Ca2+] and sustain the concentration gradient that drives release flux.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / metabolism*
  • Calcium Signaling*
  • Cytosol / chemistry
  • Muscle Fibers, Skeletal / chemistry
  • Muscle Fibers, Skeletal / metabolism
  • Muscle, Skeletal / chemistry
  • Muscle, Skeletal / metabolism*
  • Rana pipiens

Substances

  • Calcium