The tempotron: a neuron that learns spike timing-based decisions
- PMID: 16474393
- DOI: 10.1038/nn1643
The tempotron: a neuron that learns spike timing-based decisions
Abstract
The timing of action potentials in sensory neurons contains substantial information about the eliciting stimuli. Although the computational advantages of spike timing-based neuronal codes have long been recognized, it is unclear whether, and if so how, neurons can learn to read out such representations. We propose a new, biologically plausible supervised synaptic learning rule that enables neurons to efficiently learn a broad range of decision rules, even when information is embedded in the spatiotemporal structure of spike patterns rather than in mean firing rates. The number of categorizations of random spatiotemporal patterns that a neuron can implement is several times larger than the number of its synapses. The underlying nonlinear temporal computation allows neurons to access information beyond single-neuron statistics and to discriminate between inputs on the basis of multineuronal spike statistics. Our work demonstrates the high capacity of neural systems to learn to decode information embedded in distributed patterns of spike synchrony.
Similar articles
-
Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting.Neural Comput. 2010 Feb;22(2):467-510. doi: 10.1162/neco.2009.11-08-901. Neural Comput. 2010. PMID: 19842989
-
What can a neuron learn with spike-timing-dependent plasticity?Neural Comput. 2005 Nov;17(11):2337-82. doi: 10.1162/0899766054796888. Neural Comput. 2005. PMID: 16156932
-
Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. I. Input selectivity--strengthening correlated input pathways.Biol Cybern. 2009 Aug;101(2):81-102. doi: 10.1007/s00422-009-0319-4. Epub 2009 Jun 18. Biol Cybern. 2009. PMID: 19536560
-
First-spike latency of auditory neurons revisited.Curr Opin Neurobiol. 2004 Aug;14(4):461-7. doi: 10.1016/j.conb.2004.07.002. Curr Opin Neurobiol. 2004. PMID: 15321067 Review.
-
Sparse coding of sensory inputs.Curr Opin Neurobiol. 2004 Aug;14(4):481-7. doi: 10.1016/j.conb.2004.07.007. Curr Opin Neurobiol. 2004. PMID: 15321069 Review.
Cited by
-
Moiré synaptic transistor with room-temperature neuromorphic functionality.Nature. 2023 Dec;624(7992):551-556. doi: 10.1038/s41586-023-06791-1. Epub 2023 Dec 20. Nature. 2023. PMID: 38123805
-
SpikingJelly: An open-source machine learning infrastructure platform for spike-based intelligence.Sci Adv. 2023 Oct 6;9(40):eadi1480. doi: 10.1126/sciadv.adi1480. Epub 2023 Oct 6. Sci Adv. 2023. PMID: 37801497 Free PMC article.
-
A theory of hippocampal theta correlations accounting for extrinsic and intrinsic sequences.Elife. 2023 Oct 4;12:RP86837. doi: 10.7554/eLife.86837. Elife. 2023. PMID: 37792453 Free PMC article.
-
Phase information is conserved in sparse, synchronous population-rate-codes via phase-to-rate recoding.Nat Commun. 2023 Sep 30;14(1):6106. doi: 10.1038/s41467-023-41803-8. Nat Commun. 2023. PMID: 37777512 Free PMC article.
-
Mental stress recognition on the fly using neuroplasticity spiking neural networks.Sci Rep. 2023 Sep 11;13(1):14962. doi: 10.1038/s41598-023-34517-w. Sci Rep. 2023. PMID: 37696860 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
