Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Feb 16;49(4):563-75.
doi: 10.1016/j.neuron.2006.01.017.

Spontaneous network activity in the embryonic spinal cord regulates AMPAergic and GABAergic synaptic strength

Affiliations
Free article
Comparative Study

Spontaneous network activity in the embryonic spinal cord regulates AMPAergic and GABAergic synaptic strength

Carlos Gonzalez-Islas et al. Neuron. .
Free article

Abstract

Spontaneous network activity (SNA) has been described in most developing circuits, including the spinal cord, retina, and hippocampus. Despite the widespread nature of this developmental phenomenon, its role in network maturation is poorly understood. We reduced SNA in the intact embryo and found compensatory increases in synaptic strength of spinal motoneuron inputs. AMPAergic miniature postsynaptic current (mPSC) amplitude and frequency increased following the reduction of activity. Interestingly, excitatory GABAergic mPSCs also increase in amplitude through a process of synaptic scaling. Finally, the normal modulation of GABAergic mPSC amplitude was accelerated. Together, these compensatory responses appear to increase the excitability of the cord and could act to maintain appropriate SNA levels, thus demonstrating a distinct functional role for synaptic homeostasis. Because spontaneous network activity can regulate AMPAergic and GABAergic synaptic strength during development, SNA is likely to play an important role in a coordinated maturation of excitatory and inhibitory synaptic strength.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources