Heteroclinic synchronization: ultrasubharmonic locking

Phys Rev Lett. 2006 Jan 13;96(1):014101. doi: 10.1103/PhysRevLett.96.014101. Epub 2006 Jan 4.

Abstract

According to the traditional view of synchronization, a weak periodic input is able to lock a nonlinear oscillator at a frequency close to that of the input (1:1 zone). If the forcing increases, it is possible to achieve synchronization at subharmonic bands also. Using a competitive dynamical system we show the inverse phenomenon: with a weak signal the 1:1 zone is narrow, but the synchronization of ultrasubharmonics is dominant. In the system's phase space, there exists a heteroclinic contour in the autonomous regime, which is the image of sequential dynamics. Under the action of a weak periodic forcing, in the vicinity of the contour a stable limit cycle with long period appears. This results in the locking of very low-frequency oscillations with the finite frequency of the forcing. We hypothesize that this phenomenon can be the origin for the synchronization of slow and fast brain rhythms.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Brain / physiology*
  • Cortical Synchronization*
  • Models, Neurological*
  • Neurons / physiology*