Animal models of post-traumatic epilepsy

J Neurotrauma. 2006 Feb;23(2):241-61. doi: 10.1089/neu.2006.23.241.


Epilepsy is a major unfavorable long-term consequence of traumatic brain injury (TBI). Moreover, TBI is one of the most important predisposing factors for the development of epilepsy, particularly in young adults. Understanding the molecular and cellular cascades that lead to the development of post-traumatic epilepsy (PTE) is key for preventing its development or modifying the disease process in such a way that epilepsy, if it develops, is milder and easier-to-treat. Tissue from TBI patients undergoing epileptogenesis is not available for such studies, which underscores the importance of developing clinically relevant animal models of PTE. The goal of this review is to (1) provide a description of PTE in humans, which is critical for the development of clinically relevant models of PTE, (2) review the characteristics of currently available PTE models, and (3) provide suggestions for the development of future models of PTE based on our current understanding of the mechanisms of TBI and epilepsy. The development of clinically relevant models of PTE is critical to advance our understanding of the mechanisms of post-traumatic epileptogenesis and epilepsy, as well as for producing breakthroughs in the development and testing of novel antiepileptogenic treatments.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Brain Injuries / complications*
  • Brain Injuries / physiopathology
  • Disease Models, Animal*
  • Epilepsy / etiology*
  • Epilepsy / physiopathology
  • Humans
  • Rats