Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar-Apr;8(2):174-82.
doi: 10.1111/j.1525-142X.2006.00087.x.

A low diversity of ANTP class homeobox genes in Placozoa

Affiliations

A low diversity of ANTP class homeobox genes in Placozoa

A S Monteiro et al. Evol Dev. 2006 Mar-Apr.

Abstract

Homeobox genes of the ANTP and PRD classes play important roles in body patterning of metazoans, and a large diversity of these genes have been described in bilaterian animals and cnidarians. Trichoplax adhaerens (Phylum Placozoa) is a small multicellular marine animal with one of the simplest body organizations of all metazoans, showing no symmetry and a small number of distinct cell types. Only two ANTP class genes have been described from Trichoplax: the Hox/ParaHox gene Trox-2 and a gene related to the Not family. Here we report an extensive screen for ANTP class genes in Trichoplax, leading to isolation of three additional ANTP class genes. These can be assigned to the Dlx, Mnx and Hmx gene families. Sequencing approximately 12-20 kb around each gene indicates that none are part of tight gene clusters, and in situ hybridization reveals that at least two have spatially restricted expression around the periphery of the animal. The low diversity of ANTP class genes isolated in Trichoplax can be reconciled with the low anatomical complexity of this animal, although the finding that these genes are assignable to recognized gene families is intriguing.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources