A trans-tail histone code defined by monomethylated H4 Lys-20 and H3 Lys-9 demarcates distinct regions of silent chromatin

J Biol Chem. 2006 May 5;281(18):12760-6. doi: 10.1074/jbc.M513462200. Epub 2006 Mar 3.

Abstract

The specific post-translational modifications of the histone proteins are associated with specific DNA-templated processes, such as transcriptional activation or repression. To investigate the biological role(s) of histone H4 lysine 20 (H4 Lys-20) methylation, we created a novel panel of antibodies that specifically detected mono-, di-, or trimethylated H4 Lys-20. We report that the different methylated forms of H4 Lys-20 are compartmentalized within visually distinct, transcriptionally silent regions in the mammalian nucleus. Interestingly, direct comparison of methylated H4 Lys-20 with the different methylated states of histone H3 lysine 9 (H3 Lys-9) revealed significant overlap and exclusion between the specific groups of methyl modifications. Trimethylated H4 Lys-20 and H3 Lys-9 were both selectively enriched within pericentric heterochromatin. Similarly, monomethylated H4 Lys-20 and H3 Lys-9 partitioned together and the dimethylated forms partitioned together within the chromosome arms; however, the mono- and dimethylated modifications were virtually exclusive. These findings strongly suggest that the combinatorial presence or absence of the different methylated states of H4 Lys-20 and H3 Lys-9 define particular types of silent chromatin. Consistent with this, detailed analysis of monomethylated H4 Lys-20 and H3 Lys-9 revealed that both were preferentially and selectively enriched within the same nucleosome particle in vivo. Collectively, these findings define a novel trans-tail histone code involving monomethylated H4 Lys-20 and H3 Lys-9 that act cooperatively to mark distinct regions of silent chromatin within the mammalian epigenome.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Chromatin / chemistry*
  • Chromatin / metabolism
  • Fibroblasts / metabolism
  • HeLa Cells
  • Histones / chemistry*
  • Humans
  • Lysine / chemistry*
  • Methylation
  • Mice
  • Molecular Sequence Data
  • Protein Processing, Post-Translational

Substances

  • Chromatin
  • Histones
  • Lysine