Stimulus-invariant processing and spectrotemporal reverse correlation in primary auditory cortex

J Comput Neurosci. 2006 Apr;20(2):111-36. doi: 10.1007/s10827-005-3589-4. Epub 2006 Feb 20.


The spectrotemporal receptive field (STRF) provides a versatile and integrated, spectral and temporal, functional characterization of single cells in primary auditory cortex (AI). In this paper, we explore the origin of, and relationship between, different ways of measuring and analyzing an STRF. We demonstrate that STRFs measured using a spectrotemporally diverse array of broadband stimuli-such as dynamic ripples, spectrotemporally white noise, and temporally orthogonal ripple combinations (TORCs)-are very similar, confirming earlier findings that the STRF is a robust linear descriptor of the cell. We also present a new deterministic analysis framework that employs the Fourier series to describe the spectrotemporal modulations contained in the stimuli and responses. Additional insights into the STRF measurements, including the nature and interpretation of measurement errors, is presented using the Fourier transform, coupled to singular-value decomposition (SVD), and variability analyses including bootstrap. The results promote the utility of the STRF as a core functional descriptor of neurons in AI.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acoustic Stimulation
  • Action Potentials / physiology*
  • Algorithms
  • Animals
  • Artifacts
  • Auditory Cortex / physiology*
  • Auditory Perception / physiology*
  • Ferrets
  • Fourier Analysis
  • Image Processing, Computer-Assisted / methods
  • Linear Models
  • Models, Neurological
  • Neurons / physiology*