Tyrosine 706 and 807 phosphorylation site mutants in the murine colony-stimulating factor-1 receptor are unaffected in their ability to bind or phosphorylate phosphatidylinositol-3 kinase but show differential defects in their ability to induce early response gene transcription

Mol Cell Biol. 1991 Sep;11(9):4698-709. doi: 10.1128/mcb.11.9.4698.

Abstract

The receptor for colony-stimulating factor-1 (CSF-1) is a receptor protein-tyrosine kinase. To study the possible function of CSF-1 receptor autophosphorylation, two autophosphorylation sites, Tyr-706, located in the kinase insert, and Tyr-807, a residue conserved in all protein-tyrosine kinases, were changed independently to either phenylalanine or glycine. Wild-type and mutant receptors were stably expressed in Rat-2 cells. In response to CSF-1, cells expressing Phe- or Gly-706 mutant receptors showed increased growth rate and altered cell morphology. Both the Phe- and Gly-706 mutant receptors associated with and phosphorylated phosphatidylinositol-3 kinase at levels comparable with those of wild-type receptors. However, these mutant receptors differed subtly from each other and from the wild-type receptor in their ability to induce different aspects of the response to CSF-1. The Phe-706 mutant receptor was most strongly affected in its ability to increase growth rate or elevate the levels of c-fos and NGF1A mRNAs, whereas the Gly-706 mutant receptor was most markedly affected in its ability to induce a change in cell morphology or increase the levels of c-jun and NGF1A mRNAs. These findings indicate that Tyr-706 itself, or this region of the receptor, may be important for interaction of the CSF-1 receptor with different signalling pathways. Gly-807 mutant receptors lacked protein-tyrosine kinase activity, failed to respond to CSF-1, and were defective in biosynthetic processing. Phe-807 mutant receptors had 40 to 60% reduced protein-tyrosine kinase activity in vitro. Although cells expressing Phe-807 receptors were able to respond to CSF-1, the changes in growth rate and cell morphology were significantly less than seen with wild-type receptors, and the induction of early response genes was also slightly lower than for the wild-type receptor. In contrast, Phe-807 receptors were equivalent to wild-type receptors when tested for their ability to interact with phosphatidylinositol-3 kinase. These findings indicate that phosphorylation of Tyr-807 may be important for full activation of the receptor.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 1-Phosphatidylinositol 4-Kinase
  • Animals
  • Base Sequence
  • Cell Division
  • Cells, Cultured
  • DNA
  • Gene Expression Regulation*
  • Mice
  • Molecular Sequence Data
  • Mutagenesis, Site-Directed
  • Mutation
  • Peptide Mapping
  • Phosphorylation
  • Phosphotransferases / metabolism*
  • Receptor, Macrophage Colony-Stimulating Factor / genetics
  • Receptor, Macrophage Colony-Stimulating Factor / metabolism*
  • Transcription, Genetic
  • Tyrosine / metabolism*

Substances

  • Tyrosine
  • DNA
  • Phosphotransferases
  • 1-Phosphatidylinositol 4-Kinase
  • Receptor, Macrophage Colony-Stimulating Factor