The auditory cortex of primates contains a core region of three primary areas surrounded by a belt region of secondary areas. Recent neurophysiological studies suggest that the belt areas medial to the core have unique functional roles, including multisensory properties, but little is known about their connections. In this study and its companion, the cortical and subcortical connections of the core and medial belt regions of marmoset monkeys were compared to account for functional differences between areas and refine our working model of the primate auditory cortex. Anatomical tracer injections targeted two core areas (A1 and R) and two medial belt areas (rostromedial [RM] and caudomedial [CM]). RM and CM had topographically weighted connections with all other areas of the auditory cortex ipsilaterally, but these were less widespread contralaterally. CM was densely connected with caudal auditory fields, the retroinsular (Ri) area of the somatosensory cortex, the superior temporal sulcus (STS), and the posterior parietal and entorhinal cortex. The connections of RM favored rostral auditory areas, with no clear somatosensory inputs. RM also projected to the lateral nucleus of the amygdala and tail of the caudate nucleus. A1 and R had topographically weighted connections with medial and lateral belt regions, infragranular inputs from the parabelt, and weak connections with fields outside the auditory cortex. The results indicated that RM and CM are distinct areas of the medial belt region with direct inputs from the core. CM also has somatosensory input and may correspond to an area on the posteromedial transverse gyrus of humans and the anterior auditory field of other mammals.