Identification of developmentally-regulated proteins in Leishmania panamensis by proteome profiling of promastigotes and axenic amastigotes

Mol Biochem Parasitol. 2006 May;147(1):64-73. doi: 10.1016/j.molbiopara.2006.01.008. Epub 2006 Feb 9.

Abstract

We have employed proteomics to identify proteins upregulated in the amastigote life-stage of Leishmaniapanamensis, using axenically-differentiated forms as models of authentic intracellular parasites. Resolution of the soluble proteomes of axenic amastigotes and promastigotes by two-dimensional electrophoresis (2DE) in the neutral pI range (5-7) revealed equivalent numbers of protein spots in both life-stages (644-682 using Coomassie Blue and 851-863 by silver staining). Although representing a relatively low proportion (8.1-10.8%) of the predicted 8000 gene products of Leishmania, these proteome maps enabled the reproducible detection of 75 differentially-regulated protein spots in amastigotes, comprising 24 spots "uniquely" expressed in this life-stage and 51 over-expressed by 1.2-5.7-fold compared to promastigotes. Of the 11 amastigote-specific spots analysed by mass spectrometry (MS), 5 yielded peptide sequences with no orthologues in Leishmania major, and the remaining 6 were identified as 7 distinct proteins (some of which were truncated isoforms) representing several functional classes: carbohydrate/energy metabolism (fructose 1,6-bisphosphate aldolase, glucose 6-phosphate dehydrogenase, pyruvate dehydrogenase), stress response (heat shock protein [HSP] 83), cell membrane/cytoskeleton (beta-tubulin), amino acid metabolism (cysteine synthase) and cell-cycle (ran-binding protein). Four additional over-expressed spots were tentatively identified as HSPs 60 and 70 and HSP 70-related proteins -1 and -4 by positional analogy with these landmark proteins in the Leishmania guyanensis proteome. Our data demonstrate the feasibility of proteomics as an approach to identify novel developmentally-regulated proteins linked to Leishmania differentiation and intracellular survival, while simultaneously pinpointing therapeutic targets. In particular, the amastigote-specific expression of cysteine synthase underlines the importance of de novo cysteine synthesis both as a potential parasite virulence factor and as a major metabolic difference from mammalian host cells.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Electrophoresis, Gel, Two-Dimensional
  • Gene Expression Profiling*
  • Gene Expression Regulation, Developmental*
  • Leishmania / genetics
  • Leishmania / growth & development*
  • Leishmania / metabolism
  • Mass Spectrometry
  • Molecular Sequence Data
  • Proteome*
  • Protozoan Proteins / genetics
  • Protozoan Proteins / metabolism*

Substances

  • Proteome
  • Protozoan Proteins