The role of NBS1 in the modulation of PIKK family proteins ATM and ATR in the cellular response to DNA damage

Cancer Lett. 2006 Nov 8;243(1):9-15. doi: 10.1016/j.canlet.2006.01.026. Epub 2006 Mar 10.

Abstract

Ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) kinases have been considered the primary activators of the cellular response to DNA damage. They belong to the protein kinase family, phosphoinositide 3-kinase-related kinase (PIKKs). In human beings, deficiency of these kinases leads to hereditary diseases, namely ataxia telangiectasia (AT) with ATM deficiency and ATR-Seckel with ATR deficiency. NBS1, a component of MRE11/RAD50/NBS1 (MRN) complex, is another important player in DNA damage response (DDR). Mutations of NBS1 are responsible for Nijmegen breakage syndrome (NBS), a human hereditary disease with the characteristics that almost encompassed those of AT and ATR-Seckel. NBS1 has been conventionally thought to be a downstream substrate of ATM and ATR in DDR; however, recent studies suggest that NBS1/MRN functions upstream of both ATM and ATR by recruiting them to the proximity of DNA damage sites and activating their functions. In this mini-review, we would emphasize the requirement of NBS1 as an upstream mediator for the modulation of PIKK family proteins ATM and ATR.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Ataxia Telangiectasia Mutated Proteins
  • Cell Cycle Proteins / metabolism*
  • Cell Cycle Proteins / physiology*
  • DNA Damage / physiology*
  • DNA Repair / physiology
  • DNA-Binding Proteins / metabolism*
  • Humans
  • Models, Biological
  • Nuclear Proteins / physiology*
  • Protein Serine-Threonine Kinases / metabolism*
  • Tumor Suppressor Proteins / metabolism*

Substances

  • Cell Cycle Proteins
  • DNA-Binding Proteins
  • NBN protein, human
  • Nuclear Proteins
  • Tumor Suppressor Proteins
  • ATM protein, human
  • ATR protein, human
  • Ataxia Telangiectasia Mutated Proteins
  • Protein Serine-Threonine Kinases