Characterization of the human cytochrome P450 forms involved in metabolism of tamoxifen to its alpha-hydroxy and alpha,4-dihydroxy derivatives

Chem Res Toxicol. 2005 Oct;18(10):1611-8. doi: 10.1021/tx050140s.

Abstract

Tamoxifen is a known hepatocarcinogen in rats and is associated with an increased incidence of endometrial cancer in patients. One mechanism for these actions is via bioactivation, where reactive metabolites are generated that are capable of binding to DNA or protein. Several metabolites of tamoxifen have been identified that appear to predispose to adduct formation. These include alpha-hydroxytamoxifen, alpha,4-dihydroxytamoxifen, and alpha-hydroxy-N-desmethyltamoxifen. Previous studies have shown that cytochrome P450 (P450) enzymes play an important role in the biotransformation of tamoxifen. The aim of our work was to determine which P450 enzymes were capable of producing alpha-hydroxylated metabolites from tamoxifen. When tamoxifen (18 or 250 microM) was used as the substrate, P450 3A4, and to a lesser extent, P450 2D6, P450 2B6, P450 3A5, P450 2C9, and P450 2C19 all produced a metabolite with the same HPLC retention time as alpha-hydroxytamoxifen at either substrate concentration tested. This peak was well-separated from 4-hydroxy-N-desmethyltamoxifen, which eluted substantially later under the chromatographic conditions used. No alpha,4-dihydroxytamoxifen was detected in incubations with any of the forms with tamoxifen as substrate. However, when 4-hydroxytamoxifen (100 microM) was used as the substrate, P450 2B6, P450 3A4, P450 3A5, P450 1B1, P450 1A1, and P450 2D6 all produced detectable concentrations of alpha,4-dihydroxytamoxifen. These studies demonstrate that multiple human P450s, including forms found in the endometrium, may generate reactive metabolites in women undergoing tamoxifen therapy, which could subsequently play a role in the development of endometrial cancer.

MeSH terms

  • Antineoplastic Agents, Hormonal / metabolism*
  • Aryl Hydrocarbon Hydroxylases / metabolism
  • Cytochrome P-450 CYP2B6
  • Cytochrome P-450 CYP2C9
  • Cytochrome P-450 CYP3A
  • Cytochrome P-450 Enzyme System / metabolism*
  • Humans
  • Microsomes, Liver / metabolism
  • Oxidoreductases, N-Demethylating / metabolism
  • Recombinant Proteins / metabolism
  • Tamoxifen / analogs & derivatives*
  • Tamoxifen / metabolism*

Substances

  • Antineoplastic Agents, Hormonal
  • Recombinant Proteins
  • alpha,4-dihydroxytamoxifen
  • alpha-hydroxytamoxifen
  • Tamoxifen
  • Cytochrome P-450 Enzyme System
  • CYP2C9 protein, human
  • Cytochrome P-450 CYP2C9
  • Aryl Hydrocarbon Hydroxylases
  • CYP2B6 protein, human
  • CYP3A protein, human
  • Cytochrome P-450 CYP2B6
  • Cytochrome P-450 CYP3A
  • Oxidoreductases, N-Demethylating