Lymphatic vessels, by channeling fluid and leukocytes from the periphery into lymph nodes, play a central role in the development of the immune response. Despite their importance in homeostasis and disease, the difficulties in enriching and culturing lymphatic endothelial cells limit studies of their biology. Here, we report the isolation, stabilization, and characterization of a mouse lymphatic endothelial cell line (MELC) and the generated clones thereof. Cells were isolated from benign lymphangiomas induced by intraperitoneal injections of incomplete Freund's adjuvant. The MELC line expressed molecules typical of lymphatic endothelium, including VEGFR3/Flt-4, podoplanin, Prox-1, and D6, but not LYVE-1. It also expressed CD34, ICAM-1, VCAM, and JAM-A, but not CD31, VE-cadherin, E-selectin, or CX3CL1/fractalkine (both TNFalpha-induced), at variance with vascular endothelial cells tested in parallel. The inflammatory cytokines TNFalpha and IL-4 regulated production of selected adhesion molecules (VCAM), cytokines (IL-6), and chemokines (CCL2/JE). Whole genome transcriptional profiling identified a set of 150 known genes differentially expressed in MELC versus vascular endothelial cells. Thus, the MELC line may represent an invaluable source of lymphatic endothelium.