Role of excitatory amino acids in the generation and transmission of respiratory drive in neonatal rat

J Physiol. 1991 Jun:437:727-49. doi: 10.1113/jphysiol.1991.sp018622.

Abstract

1. The involvement of excitatory amino acids in the generation and transmission of rhythmic respiratory drive was studied in an in vitro neonatal rat brain stem-spinal cord preparation. The subclasses of excitatory amino acid receptors studied included: (i) N-methyl-D-aspartate (NMDA) receptors, (ii) (R, S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrobromide (AMPA) and kainate (non-NMDA) receptors and (iii) 2-amino-4-phosphonobutyric acid (AP-4)-sensitive receptors. Respiratory motoneurone population discharge was recorded from glossopharyngeal (IX), vagus (X), and hypoglossal (XII) cranial nerves, as well as cervical (C1-C5) and thoracic (T2-T5) spinal ventral roots. This activity is generated in the motoneurone pools that transmit respiratory drive to upper airway, accessory, diaphragm and intercostal muscles. Perturbations of motor nerve discharge were analysed after excitatory amino acid receptor antagonists or agonists were added to bathing solutions surrounding either the spinal cord or brain stem. The excitatory amino acid receptor antagonists included: (i) NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imin-H-maleate (MK-801) and (ii) non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). The agonists included: (i) NMDA, (ii) non-NMDA receptor agonists AMPA and kainic acid. The effects of perturbations of AP-4-sensitive receptors with AP-4, and of inhibiting excitatory amino acid uptake with dihydrokainic acid (DHK) were also studied. 2. Block of non-NMDA receptors in the medulla by CNQX resulted in an antagonist concentration-dependent decrease in the respiratory motoneuronal burst frequency. Non-NMDA receptor activation with kainic acid or AMPA caused a concentration-dependent increase in burst frequency, with competitive interactions with CNQX. 3. Inhibition of excitatory amino acid uptake in the medulla with DHK resulted in a reversible, dose-dependent increase in respiratory frequency. A similar increase in respiratory frequency was induced by DHK when medullary NMDA receptors were blocked with MK-801, confirming that endogenously released excitatory amino acids act at non-NMDA receptors to modulate rhythm. 4. Non-NMDA receptor block reduced and ultimately abolished the amplitude of integrated cranial and spinal respiratory motoneuronal discharge when added to the solution bathing the medulla and spinal cord, respectively. 5. NMDA receptor block in the medulla with MK-801 did not perturb the spontaneous respiratory burst frequency, although bath application of NMDA produced a dose-dependent increase in frequency, with non-competitive interactions with MK-801. MK-801 also did not perturb the amplitude of cranial or bulbospinal premotoneurone discharge.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acids / antagonists & inhibitors
  • Amino Acids / physiology*
  • Aminobutyrates / pharmacology
  • Animals
  • Brain Stem / physiology*
  • Motor Neurons / physiology
  • N-Methylaspartate / physiology
  • Organ Culture Techniques
  • Rats
  • Rats, Inbred Strains
  • Receptors, Amino Acid
  • Receptors, Cell Surface / physiology
  • Respiration / physiology*
  • Spinal Cord / physiology*

Substances

  • Amino Acids
  • Aminobutyrates
  • Receptors, Amino Acid
  • Receptors, Cell Surface
  • N-Methylaspartate
  • 2-amino-4-phosphonobutyric acid