Extracellular matrix molecules and their receptors: an overview with special emphasis on periodontal tissues

Crit Rev Oral Biol Med. 1991;2(3):323-54. doi: 10.1177/10454411910020030301.


Knowledge of extracellular matrix molecules and their cell receptors has increased exponentially during the last 2 decades. It is now known that the structure and function of each tissue is based on specific combinations of matrix molecules. The major constituents of the extracellular matrix are collagens, proteoglycans, and adhesive glycoproteins. The rapid development of biochemical, molecular biological, and immunological research has revealed a lot of interesting details pertaining to these molecules. Several new collagen types have been discovered. In addition to being responsible for the strength and form of tissues, each collagen type has specific sequences providing them with special features such as flexibility and the ability to interact with other matrix molecules and cells. Proteoglycans are another large group of matrix molecules with a variety of functions. Proteoglycans play an important role in tissue resilience and filtering. Some proteoglycans have a capacity to specifically bind other matrix molecules and growth factors, while others act as matrix receptors on the cell surface. An important part of regulation of the cell behavior is played by adhesive glycoproteins belonging to the fibronectin and laminin families. Several isoforms of fibronectin and laminin that result from alternative RNA splicing serve specific functions such as controlling the attachment, migration, and synthetic activity of cells. A major group of cell receptors for cell-matrix and cell-cell interactions is termed integrins. The integrins are cell surface proteins composed of two polypeptides whose structure dictates the specificity of each receptor. The cytoplasmic domain of the integrins interacts with cytoskeletal elements within the cell, and thereby relays the information from the extracellular space into the protein synthesis machinery. The expression of the integrins is controlled by the extracellular matrix and growth factors, most notably TGF beta. During periodontal diseases several aspects of the cell-matrix interactions may be disturbed. Therefore, an understanding of the special features of the extracellular matrix and their receptors in periodontal tissues is a prerequisite for developing new approaches to the prevention and treatment of periodontal diseases.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Extracellular Matrix Proteins / physiology*
  • Humans
  • Periodontium / cytology*
  • Periodontium / ultrastructure
  • Receptors, Cell Surface / physiology*


  • Extracellular Matrix Proteins
  • Receptors, Cell Surface