Fate of 3,3'-diindolylmethane in cultured MCF-7 human breast cancer cells

Chem Res Toxicol. 2006 Mar;19(3):436-42. doi: 10.1021/tx050325z.

Abstract

3,3'-Diindolylmethane (DIM) is a major in vivo product of the cancer preventative agent indole-3-carbinol that is found in vegetables of the genus Brassica. Here, we report on the metabolic fate of radiolabeled DIM in MCF-7 cells. DIM was slowly metabolized to several sulfate conjugates of oxidized DIM products that were primarily detected in the medium. The radioactivity detected in cells was predominantly unmodified DIM (81-93%) at all time intervals up to 72 h treatment. Co-treatment of MCF-7 cells with quercetin slowed the rate that oxidized DIM products accumulated in the medium, while indole[3,2-b]carbazole (ICZ) co-treatment accelerated their production. ICZ is an inducer of P450 1A2, while quercetin is a specific inhibitor of this isoform, suggesting that P450 1A2 is primarily responsible for the oxidation of DIM, probably through 2,3-epoxidation similar to 3-methylindole. Sulfate conjugates of oxidized DIM metabolites were cleaved by sulfatase digestion and identified by LC/MS as 3-(1H-indole-3-ylmethyl)-2-oxindole (2-ox-DIM), bis(1H-indol-3-yl)methanol (3-methylenehydroxy-DIM), 3-[hydroxy-(1H-indol-3-yl)-methyl]-1,3-dihydro-2-oxindole (3-methylenehydroxy-2-ox-DIM), and 3-hydroxy-3-(1H-indole-3-ylmethyl)-2-oxindole (3-hydroxy-2-ox-DIM). Derivatives of 2-ox-DIM represented greater than 30% of the radioactivity in the sulfatase-digested medium. Although oxindole formation was the primary metabolic pathway in MCF-7 cells, synthetic 2-ox-DIM was inactive in a 4-ERE-luciferase reporter assay and, therefore, probably not responsible for the estrogenic activity previously observed for DIM. Unmodified DIM rapidly accumulated in the nuclear membranes representing approximately 35-40% of the radioactivity after 0.5-2 h treatment. Uptake of radiolabeled DIM appeared to be a passive partitioning into the nuclear membranes and was not dependent upon the cell cytosol. The nuclear uptake of DIM was not saturable and could not be blocked by pretreatment with unlabeled DIM (100 microM). Further, treatments in serum-free medium increased the uptake of radiolabeled DIM by the MCF-7 cells. These findings show that the uptake of DIM by membranes significantly increases its localized concentration, which may contribute to its biological activities.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Anticarcinogenic Agents / metabolism*
  • Breast Neoplasms / metabolism*
  • Cell Line, Tumor
  • Cell Nucleus / chemistry
  • Cell Nucleus / metabolism
  • Cell Proliferation / drug effects
  • Chemical Phenomena
  • Chemistry, Physical
  • Chromatography, High Pressure Liquid
  • Chromatography, Thin Layer
  • Female
  • Genes, Reporter / genetics
  • Glucuronidase / chemistry
  • Humans
  • Indicators and Reagents
  • Indoles / metabolism*
  • Luciferases / metabolism
  • Spectrometry, Mass, Electrospray Ionization
  • Spectrophotometry, Ultraviolet
  • Sulfatases / chemistry

Substances

  • Anticarcinogenic Agents
  • Indicators and Reagents
  • Indoles
  • Luciferases
  • Sulfatases
  • Glucuronidase
  • 3,3'-diindolylmethane