Architecture of active mammalian respiratory chain supercomplexes
- PMID: 16551638
- DOI: 10.1074/jbc.M513525200
Architecture of active mammalian respiratory chain supercomplexes
Abstract
In the inner mitochondrial membrane, the respiratory chain complexes generate an electrochemical proton gradient, which is utilized to synthesize most of the cellular ATP. According to an increasing number of biochemical studies, these complexes are assembled into supercomplexes. However, little is known about the architecture of the proposed multicomplex assemblies. Here, we report the electron microscopic characterization of the two respiratory chain supercomplexes I1III2 and I1III2IV1 in bovine heart mitochondria, which are also two major supercomplexes in human mitochondria. After purification and demonstration of enzymatic activity, their structures in projection were determined by single particle image analysis. A difference map between the supercomplexes I1III2 and I1III2IV1 closely fits the x-ray structure of monocomplex IV and shows its location in the assembly. By comparing different views of supercomplex I1III2IV1, the location and mutual arrangement of complex I and the complex III dimer are discussed. Detailed knowledge of the architecture of the active supercomplexes is a prerequisite for a deeper understanding of energy conversion by mitochondria in mammals.
Similar articles
-
Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1.EMBO J. 2011 Sep 9;30(22):4652-64. doi: 10.1038/emboj.2011.324. EMBO J. 2011. PMID: 21909073 Free PMC article.
-
Three-dimensional structure of the respiratory chain supercomplex I1III2IV1 from bovine heart mitochondria.Biochemistry. 2007 Nov 6;46(44):12579-85. doi: 10.1021/bi700983h. Epub 2007 Oct 10. Biochemistry. 2007. PMID: 17927210
-
Supercomplex organization of the oxidative phosphorylation enzymes in yeast mitochondria.J Bioenerg Biomembr. 2008 Oct;40(5):411-7. doi: 10.1007/s10863-008-9168-4. Epub 2008 Oct 7. J Bioenerg Biomembr. 2008. PMID: 18839289 Review.
-
Interaction of complexes I, III, and IV within the bovine respirasome by single particle cryoelectron tomography.Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15196-200. doi: 10.1073/pnas.1107819108. Epub 2011 Aug 29. Proc Natl Acad Sci U S A. 2011. PMID: 21876144 Free PMC article.
-
Supramolecular organization of protein complexes in the mitochondrial inner membrane.Biochim Biophys Acta. 2009 Jan;1793(1):117-24. doi: 10.1016/j.bbamcr.2008.05.019. Epub 2008 Jun 3. Biochim Biophys Acta. 2009. PMID: 18573282 Review.
Cited by
-
Mechanisms of mitochondrial fission and fusion.Cold Spring Harb Perspect Biol. 2013 Jun 1;5(6):a011072. doi: 10.1101/cshperspect.a011072. Cold Spring Harb Perspect Biol. 2013. PMID: 23732471 Free PMC article. Review.
-
Cytochrome c oxidase dysfunction in oxidative stress.Free Radic Biol Med. 2012 Sep 15;53(6):1252-63. doi: 10.1016/j.freeradbiomed.2012.07.021. Epub 2012 Jul 25. Free Radic Biol Med. 2012. PMID: 22841758 Free PMC article. Review.
-
Mitochondrial DNA variant for complex I reveals a role in diabetic cardiac remodeling.J Biol Chem. 2012 Jun 22;287(26):22174-82. doi: 10.1074/jbc.M111.327866. Epub 2012 Apr 27. J Biol Chem. 2012. PMID: 22544750 Free PMC article.
-
Respiratory chain complexes in dynamic mitochondria display a patchy distribution in life cells.PLoS One. 2010 Jul 30;5(7):e11910. doi: 10.1371/journal.pone.0011910. PLoS One. 2010. PMID: 20689601 Free PMC article.
-
Ovarian carcinoma immunoreactive antigen-like protein 2 (OCIAD2) is a novel complex III-specific assembly factor in mitochondria.Mol Biol Cell. 2022 Apr 1;33(4):ar29. doi: 10.1091/mbc.E21-03-0143. Epub 2022 Jan 26. Mol Biol Cell. 2022. PMID: 35080992 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
