Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May;133(9):1703-14.
doi: 10.1242/dev.02342. Epub 2006 Mar 22.

FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus

Affiliations

FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus

Russell B Fletcher et al. Development. 2006 May.

Abstract

The relative contributions of different FGF ligands and spliceforms to mesodermal and neural patterning in Xenopus have not been determined, and alternative splicing, though common, is a relatively unexplored area in development. We present evidence that FGF8 performs a dual role in X. laevis and X. tropicalis early development. There are two FGF8 spliceforms, FGF8a and FGF8b, which have very different activities. FGF8b is a potent mesoderm inducer, while FGF8a has little effect on the development of mesoderm. When mammalian FGF8 spliceforms are analyzed in X. laevis, the contrast in activity is conserved. Using a loss-of-function approach, we demonstrate that FGF8 is necessary for proper gastrulation and formation of mesoderm and that FGF8b is the predominant FGF8 spliceform involved in early mesoderm development in Xenopus. Furthermore, FGF8 signaling is necessary for proper posterior neural formation; loss of either FGF8a or a reduction in both FGF8a and FGF8b causes a reduction in the hindbrain and spinal cord domains.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources